Detection of methicillin resistant and toxin-associated genes in Staphylococcus aureus

Cajethan Ezeamagu a,⇑, Irene Imanatue a, Margaret Dosunmu a, Adebola Odeseye b, Glory Baysah a, Daniel Aina a, Foluke Odutayo c, Grace Mensah-Agyei a

a Department of Microbiology, Babcock University, Ilishan-Remo, Ogun State, Nigeria
b Nigerian Institute of Science Laboratory Technology Ibadan, Oyo State, Nigeria
c Department of Basic Sciences, Babcock University, Ilishan-Remo, Ogun State, Nigeria

Abstract

Methicillin-resistant Staphylococcus aureus is a problem in both healthcare institutions and community settings. This is due to its multi-drug resistant challenges. Hence, this study assessed the prevalence of methicillin resistant gene (mecA), exfoliative toxin (eta and etb) and toxic shock syndrome (tsst-1) genes in S. aureus isolated from clinical samples. A total of 120 clinical samples of patients (urine, high vagina swab (HVS), semen, wound swab, sputum and urethral swab) from a hospital laboratory were obtained. S. aureus was isolated and then identified with API-staph kit. Antibiotic susceptibility of the isolates was determined by agar diffusion while PCR was used to detect the presence of mecA and toxin-associated genes. Fifty S. aureus isolates were obtained at frequencies of 26(52%), 12(24%), 4(8%), 3(6%), 3(6%) and 2(4%) from the HVS, urine, semen, wound, sputum and urethral swab samples respectively. All the isolates of S. aureus were resistant to the antibiotics used in this study. MecA, tsst-1, eta and etb were detected in 19(38%), 7(14%), 3(6%) and 2(4%) of the isolates respectively. The prevalence of MRSA and its resistance pattern observed in this study was a signal that the health-care workers and the general public are at risk.

1. Introduction

Staphylococcus aureus is a normal flora of the mucosa membrane, and skin of both humans and animals (Hanselman et al., 2009). An estimated carriage rate in healthy human population stands between 20% and 30% (Kluytmans et al., 1997). S. aureus infection is usually asymptomatic, (Tong et al., 2015) though the bacterium is responsible for several diseases in humans such as abscesses, respiratory infections, bacteremia, endocarditis, osteomyelitis, and acute food poisoning (Kazmierczak et al., 2014). S. aureus continues to be one of the most commonly implicated bacteria causing human diseases throughout the world (I.W. G-S. C. C, 2009).

The pathogenicity of S. aureus has become a problem in both health institutions and community settings especially with the emergence of methicillin-resistant to S. aureus, MRSA (Panlilio et al., 1992; Layton et al., 1995; Kazmierczak et al., 2014). The methicillin resistant element, mecA, is an inducible 76-kDa penicillin binding protein (PBP) located on staphylococcal chromosomal cassette which codes for penicillin binding protein (PBP2a) with altered affinity to beta-lactam antibiotics (Cohen, 1992; Neu, 1992). Acquisition of this gene promotes staphylococcal resistance to all beta-lactam antibiotics, thereby hampering their efficacy for clinical use during MRSA infections. Since the discovery of MRSA in the early 60s, its prevalence has been on the increase; surveillance in the United States showed a steady rise in the prevalence of infections due to MRSA from 2.4, 5.0, 29.0% in 1974, 1981, 1991 respectively to 43.0% in 1997 (Haley et al., 1982; Panlilio et al., 1992; Gardam, 2000; Saleh et al., 2013).

With the help of potent protein toxins, Virulent strains of S. aureus initiate infections as well as express cell-surface proteins that mediate antibody inactivation (Patel et al., 1987; Schneewind et al., 1995; Dinges et al., 2000). S. aureus can produce various enzymes such as coagulase, hyaluronidase, deoxyribonuclease and lipase which aid its virulence and spread within the host (Eyre and Stanley, 1987; Balaban and Rasooly, 2000; Lin et al., 2010; Hennekine et al., 2012; Kong et al., 2016). In addition, other variety of extracellular protein toxins, including enterotoxins, toxic shock syndrome toxin 1 (TSST-1), exfoliative toxins

⇑ Corresponding author.
E-mail address: onyezeceajeth@yahoo.com (C. Ezeamagu).

Article info

Article history:
Received 5 May 2017
Received in revised form 20 July 2017
Accepted 29 July 2017
Available online 1 August 2017

Keywords:
S. aureus
Methicillin resistance
Staphylococcal toxins

© 2017 Beni-Suef University. Production and hosting by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

http://dx.doi.org/10.1016/j.bjabas.2017.07.010
2314-8535 © 2017 Beni-Suef University. Production and hosting by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
(ETs), hemolysins, and coagulase which increase pathogenicity of the organism as well as its ability to invade host cells have been reported (Mehrotra et al., 2000; Kong et al., 2016). These protein toxins were found more in MRSA than non-MRSA cases (Shimaoka et al., 1996; Liu et al., 2010). Of these proteins, toxic shock syndrome (TSST-1) and exfoliative (ETA and ETB) toxins have been documented as the cause of toxic shock syndrome and scalded skin syndrome in human host respectively (Johnson et al., 1991). The former is a pyrogenic toxins of molecular weight 22 kDa which are expressed in 25% of S. aureus and produces its toxic effect by stimulating the release of inflammatory markers; interleukin-1, interleukin-2 and tumour necrosis factor (Dinges et al., 2000; Kong et al., 2016).

The burdens associated with MRSA infections are not only because of the painful trauma inflicted on the patients, but also as a result of cost incurred due to prolong hospitalization as most of the drug of choice like beta-lactam antibiotics could no longer effectively produce bactericidal effects on this organism (Gould, 2006; Kong et al., 2016). The reason for this development is attributable to production of beta-lactamase which destroys the functional integrity of the beta-lactam antibiotics by cleaving the β-lactam ring of the penicillin molecule. Additionally, the ability of S. aureus to produce various antibiotic deactivating enzymes has compounded the problems of antimicrobial therapy resulting in multiple resistances to these agents (CME, 2008).

Knowledge of MRSA and its toxicigenic status are important for right antimicrobial intervention and epidemiological purposes. In Nigeria, only scanty studies with regard to methicillin and toxins encoded genes in S. aureus have been investigated (Kolawole et al., 2013; Alli et al., 2015). Hence, this study was designed to investigate the resistance pattern, prevalence of methicillin and three associated staphylococcal toxicigenic genes of S. aureus isolated from clinical samples.

2. Materials and methods

2.1. Isolation procedure and ethical consideration

Clinical samples (HVS, urine, semen, wound swab, urethral swab and sputum) from patients who were on hospital admission due to diseases as urinary tract, skin, pulmonary infections to mention a few were obtained. These samples were sent to microbiology laboratory department of the hospital, for routine analysis. Samples were streaked on prepared plates of Mannitol Salt Agar (Oxoid, UK) and incubated using incubator (Gallenkomp, England) at 37 °C for 18–24 h. Colonies showing yellow coloration were picked. Morphologically distinct colonies were sub-cultured on fresh tryptone soy agar (Oxoid, UK) petri plates. Pure colonies obtained were stored in 40% glycerol at 0 °C for subsequent studies. Ethical clearance was obtained from Babcock University/Research Ethics Committee (BUHREC).

2.2. Identification

All the suspected strains of S. aureus were identified using both preliminary tests such as Gram staining, catalase, coagulase as previously described (Akobi et al., 2012) and API-Staph identification kit (BioMerieux, France) following the manufacturer’s instructions. Briefly, discrete colonies of S. aureus strains were removed from an overnight culture inoculated on Trypticase soy agar plates using a sterile wire loop into 6 ml of staph medium. The suspension was ensured to match 0.5 McFarland turbidity standard. Each microculture on the strip was filled with the cell suspension of the test organism. An anaerobiosis was created in ADH and URE test by filling the cupules with mineral oil. After inoculation, strips were incubated for 18–24 h at 37 °C. Test results were developed with staph-reagents, read and interpreted following the manufacturer’s instructions.

2.3. Antibiotic susceptibility test

Antibiotic susceptibility was determined by agar diffusion method (Bauer et al., 1966). A single pure colony of each isolate was inoculated into a test tube containing 2 ml nutrient broth (Oxoid, UK) and incubated overnight. The young physiological overnight culture of each isolate was diluted with sterile distilled water until the turbidity matched 0.5 McFarland standard. A sterile swab stick was dipped into the adjusted suspension and streaked over the surface of an already prepared Mueller-Hinton Agar (Oxoid, UK) plates. The antibiotic discs: ceftazidime (30 μg), cefuroxime (30 μg), cloxacillin (5 μg), erythromycin (5 μg), ofloxacin (5 μg), gentamicin (10 μg), amoxicillin/clavulanate (30 μg), ceftriaxone (30 μg), (Abtek®) were applied onto the inoculated plates maintaining a distance of 30 mm edge to edge. The plates were incubated for 18–24 h at 37 °C. The diameter of the inhibition zones was measured using ruler and interpreted according to the criteria recommended by the CLSI (2015).

2.4. Extraction of DNA by boiling method

DNA from isolates was prepared by boiling following previous method (Pe'rez-roth et al., 2001) but with some modifications. A single colony of each isolate was inoculated into nutrient broth and incubated overnight at 37 °C for 18–24 h. The samples were centrifuged at 5000×g for 10 min. The supernatant was discarded, and the pellet was re-suspended in 40 μl of sterilized distilled water. The suspension was subjected to boiling at 100 °C in water bath (Uniscope, Surgifriend, England) for 10 min, and centrifuged at 5000×g for 30 s. The supernatant was then transferred into a fresh Eppendorf tubes before it was stored at 4 °C. Aliquots of 1 μl of template DNA were used for PCR.

2.5. Detection of toxin genes (eta, etb and tsst-1) by multiplex PCR

Multiplex PCR was carried out as described previously (Mehrotra et al., 2000) with modifications. An aliquot of 1.0 μl of DNA suspension was added to PCR mixture consisting of 12.5 μl OneTaq Quick-Load 2X Master Mix with Standard Buffer (New England BioLabs), 0.5 μl of 10 μM each eta, etb and tsst-1 primers produced by Sigma-Aldrich, Germany (Table 1). The reaction mixture was round up to 25 μl with sterile distilled water. Multiplex Polymerase Chain Reaction assays were carried out with a negative control containing all of the reagents without DNA template. DNA amplification was carried out using 9700 thermocycler with the following thermal cycling profile: Initial denaturation at 95 °C for 3 min, denaturation 94 °C for 30 s, annealing 40 °C for 30 s, extension 72 °C for 30 s and final extension 72 °C for 7 min with a programable period of 30 cycles. After PCR amplification, 10 μl of PCR product was resolved by agarose gel electrophoresis.

3. Results

3.1. API-identification system and the distribution of isolates

One hundred and twenty clinical samples were obtained of which 50 S. aureus strains were isolated from 40 female and 10 male subjects. Of the 50 S. aureus isolates, 26 (52%), 12 (24%), 4 (8%), 3 (6%) and 2 (4%) were isolated from HVS, urine, semen, wound and sputum and urethra, respectively. All the isolates were correctly identified with the API-identification kit.
3.2. Status of methicillin resistant, exfoliative genes and antibiogram

Methicillin resistant determinant was detected in 10 (20%), 5 (10%), 2 (4%), 1 (2%) and 1 (2%) S. aureus isolated from HVS, urine, semen, sputum and urethral samples, respectively (Table 2). In general, mecA (Fig. 1) was detected in 19 isolates (38%). The distribution of mecA positive isolates indicated that young females have highest colonization followed by older females (Fig. 2). This distribution fell into three age categories; 18–26, 33–36 and 34–50 years. The tsst-1 (14%), eta (6%) and etb (4%) were detected in these isolates (Fig. 3) but in a relatively low degree. Only one isolate has three genes (mecA, etb and tsst-1). The tsst-1 gene was detected in three isolates of S. aureus obtained from HVS samples while only one isolate of S. aureus isolated from urine, sputum, urethral swab and semen samples harbor this gene. All the strains of S. aureus were resistant to the antibiotics used in this study.

4. Discussion

The isolation of S. aureus from various clinical samples (semen, HVS, urethral, wound swab, sputum and urine) indicative that it is widely distributed. This distribution could be an evidence of S. aureus versatility and cause of most nosocomial associated infections. The frequency of isolation of MRSA in HVS and urine over other samples is unclear, but it is possible that sexual behaviors of the patients under study might have been responsible for this outcome. Certain lifestyle behaviors such as illicit drug use and high-risk sexual behaviors increase the risk of MRSA colonization (Shadyab and Crum-Cianflone, 2012). A cohort study (Farley et al., 2015) reported that illicit drug and public gym use were predisposing factors associated with prevalence of S. aureus colonization and these result in spread of S. aureus through person-to-person contact or fomites. Other risk factors for hospital acquisition of MRSA include prolonged hospitalization, stay in an intensive care unit, chronic diseases, prior exposure to antibiotics, surgery and contact with a patient known to be colonized or infected with MRSA (Lucet et al., 2003). The above risk factors might somehow contributed to MRSA colonization of patients in this study.

In this study, the prevalence of MRSA was 38% and this is comparable to 0.3–34% in European countries (de Neeling et al., 1998; Gbaguidi-Haore et al., 2009; Bocher et al., 2010), 41.6% in the USA (Yu et al., 2012), but less than 72% in Lebanon, (Tokajian et al., 2011), 77.65–80% in China (Peng et al., 2010; Tokajian et al., 2011) and 87.6% in Iran (Koosha et al., 2016). The distribution of mecA positive strains seems to be sex and age dependent. In this study, strains with mecA genes were more frequent in females than males. There is a need for accurate epidemiological studies and appropriate infection control measures to prevent the spread of MRSA in the community.
The prevalence of MRSA and its resistance pattern observed in this study is a signal that the health-care workers and the general public are at risk. Besides, appearance of toxin genes only in mecA positive isolates may indicate an interplay and cooperation between resistant and toxin genes within the strains. Hence, effort must be put in place to curtail the spread which include renewed awareness and establishment of drug resistance surveillance system.

Conflicts of interest

The authors declared no conflict of interest.
References

CLSI (Clinical Laboratory Standard Institute) Performance Standards for Antimicrobial Susceptibility Testing; Twentieth-Fifth Informational Supplement (M100-S25), 2015, vol. 35 (3) P. 64, Wayne, PA, USA.


