INTRODUCTION

Herbal toxicity has been reported on some herbs used for curing of different ailments, one of the occurrences of toxicity involving Chinese herbs between 1991 and 1992 in Belgium, in which young women were admitted to hospitals due to renal failure [1]. The moringa tree is native to the southern foothills of the Himalayas, Africa, and the Middle East. The root contains an active anti-biotic principle, pterygospermin. The root bark contains two alkaloids, namely, morganine and morganinine [2].

India ancient traditional medicine called it Ayurveda says the leaves of the Moringa tree prevent 300 diseases. Modern science is confirmed that these leaves could help prevent untold suffering and death caused by malnutrition and related diseases [2,3]. Study had shown that Moringa oleifera (MO) have various ability to cure different disease, in which diabetes is not an exception [4].

The kidneys been a dark-red, bean-shaped organs in, one side of the kidney bulges convex and the other side is concave. There is a cavity attached to the concave side of the kidney, called the Renal Pelvis, which extends into the ureter. Kidney is enclosed in the renal capsule, which helps to protect them against infections and trauma. It is divided into two main areas, a light outer area called the renal cortex, and a darker inner area called the renal medulla. The renal artery delivers blood to the kidneys each day. Over 180 l (50 gallons) of blood pass through the kidneys every day. When this blood enters the kidneys, it is filtered and returned to the heart through the renal vein [5].

Pharmaceutical drugs are designed to elicit specific reactions. Their associated side effects are undesired actions, usually traded as a “risk” against the “benefit” of the primary effect. Herbs trend to have several broad actions on a number of whole physiological systems. These actions are usually oriented in the same general therapeutic direction and are usually complementary or synergistic, often non-specific, and very rarely adverse. Herb actions cannot be adequately described using the vocabulary of “drug,” for exapmle, diuretic they are too complex. The clearest example of this is the coining of the term “adaptogenic” used to describe the multiple non-specific effects of herbs such as Ginseng [6].

METHODS

The ethical committee of the Ladoke Akintola University of Technology, Ogbomoso, approved the commencement of the research (LAUTRC: 10345). Twenty (20) adult Wistar rats [(both sex) were caged based on same sex to avoid mating and pregnancy] with average weight of 110 g were randomly assigned into four groups (n=5): A-Control, B-250 mg/body weight (BW) of MO, C-500 mg/BW of MO, and D-750 mg/BW of MO orally.

When the animals were assigned to their respective groups, they were given various doses of MO (250, 500, 750 mg/kg bw) in different sections of the experiment. A total of 20 animals were used in the experiment, with 5 animals in each group. The animals were divided into 4 groups: A-Control, B-250 mg/BW, C-500 mg/BW, and D-750 mg/BW.

RESULTS

The crude aqueous extract of MO Lam, shows insignificant effects on the biochemical parameters and moringa lowers the level of the biomarkers in the control group. In the renal medulla, the renal artery delivers blood to the kidneys each day. Over 180 l (50 gallons) of blood pass through the kidneys every day. When this blood enters the kidneys, it is filtered and returned to the heart through the renal vein [5].

Pharmaceutical drugs are designed to elicit specific reactions. Their associated side effects are undesired actions, usually traded as a “risk” against the “benefit” of the primary effect. Herbs trend to have several broad actions on a number of whole physiological systems. These actions are usually oriented in the same general therapeutic direction and are usually complementary or synergistic, often non-specific, and very rarely adverse. Herb actions cannot be adequately described using the vocabulary of “drug,” for example, diuretic they are too complex. The clearest example of this is the coining of the term “adaptogenic” used to describe the multiple non-specific effects of herbs such as Ginseng [6].
site of the experimentation. Extraction process as carried out using the method described elsewhere [7-9].

The whole experiment lasted for 3 weeks (21 days) after which the animals were fasted overnight and were sacrificed by cervical dislocation and both kidney (Right and Left) were harvested and processed with Hematoxylin and Eosin using Drury, 1967 method, that reveal the histo-architectural effect of leaves extract of MO.

RESULTS

Data were presented as Mean±SEM (standard error of mean). P value (p<0.05) was considered statistically significant.

DISCUSSION

MO increases the weight of the animals morphologically by comparing the weight of the animals before administrating with after administration but at 5% level of significance; the data suggest that the mean weight (Table 1) of the rats does not differ significantly, likewise in between the left and right kidneys after sacrificing the rats. The rats in the treated group appeared active and well nourished, and the male treated group showed hyper-activeness in sexual acts in all groups except in control group.

The photomicrographs of the control Group A (Fig. 1) showed normal glomeruli, normal distal, and proximal convoluted tubules. These are keeping in line with normal kidney histological findings. The photomicrograph (Figs. 2-4) of the histology of the kidney of the treated groups (B, C, and D) also showed that normal glomeruli, distal, and proximal convoluted tubules are also within normal limit. There are similarities in the histological findings in these groups at different dosage and that of control analyzed. But when considering the weights of the animals, the bar charts show insignificant based on the P value and the mean±SEM (Table 1-2).

Table 1: Mean weight of the animals in each groups data

<table>
<thead>
<tr>
<th>Groups</th>
<th>Mean±S.E.M</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>161.67±3.663</td>
<td>0.0000</td>
</tr>
<tr>
<td>A-B</td>
<td>174.87±4.935</td>
<td>0.0982</td>
</tr>
<tr>
<td>A-C</td>
<td>184.17±10.64</td>
<td>0.1162</td>
</tr>
<tr>
<td>A-D</td>
<td>182.50±10.00</td>
<td>0.1221</td>
</tr>
<tr>
<td>B-C</td>
<td>184.17±10.64</td>
<td>0.4722</td>
</tr>
<tr>
<td>B-D</td>
<td>182.50±10.00</td>
<td>0.5312</td>
</tr>
<tr>
<td>C-D</td>
<td>182.50±10.00</td>
<td>0.9146</td>
</tr>
</tbody>
</table>

At 5% level of significance, the data suggest that the mean weight of the rats does not differ significantly from each other

Table 2: Mean weight of the organ (Kidney) data

<table>
<thead>
<tr>
<th>Groups</th>
<th>Mean±S.E.M</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>0.5075±0.04250</td>
<td>0.0000</td>
</tr>
<tr>
<td>A-B</td>
<td>0.5980±0.006250</td>
<td>0.8179</td>
</tr>
<tr>
<td>A-C</td>
<td>0.5413±0.003750</td>
<td>0.3916</td>
</tr>
<tr>
<td>A-D</td>
<td>0.513±0.018750</td>
<td>0.2533</td>
</tr>
</tbody>
</table>

Since p-value (0.00) < 0.05, at 5% level of significance, it is concluded that there is a significant difference between the left and right kidney after sacrificed

Fig. 1: Group A control rats photomicrograph of a kidney section showing normal Histology of glomeruli (G), distal (D) and proximal (P) convoluted tubules, interstitium and periglomerular space (*). (Hematoxylin and Eosin Method×100 and ×400, respectively)

Fig. 2: Group B tested rats section of a kidney revealing normal histology of glomeruli (G), distal (D) and proximal (P) convoluted tubules, and glomerular Space (*). (Hematoxylin and Eosin Stain ×100 and ×400, respectively)

Fig. 3: Group C treated rats section of a kidney showing normal histology of glomeruli (G), distal (D) and proximal (P) convoluted tubules, and glomerular space (*). (Hematoxylin and Eosin method Stain of ×100 and ×400, respectively)

Fig. 4: Group D treated rats photomicrograph of a kidney section showing normal histology of glomeruli (G), distal (D) and proximal (P) convoluted tubules, interstitium and periglomerular space (*). (Hematoxylin and Eosin method stain of ×100 and ×400, respectively)
CONCLUSION AND RECOMMENDATION

MO is a good herb that has no damage effect to body and kidney but of more beneficial effect, the finding of this experiment indicates that both low and high dosage consumption of MO has more beneficial effect to body and kidney and it of no damage effect to body and kidney. Therefore, further studies are recommended to support the above findings. Serum, creatinine, and urea, electrolyte levels could be done for further elucidation of effects of the extracts on the kidney. Furthermore, creatinine and urea clearance could be done. The above are necessary before any conclusion could be made on the above findings because there might have been derangement of biochemical data before it could be noticed morphologically.

REFERENCES